
CSOD xAPI (Tin Can)
Integration Guide

Cornerstone Edge CSX

Table of contents
Contents
1. CSOD xAPI (Tin Can) Support 1

1.1 Introduction 1
1.2 How does it work? 2
1.3 What is a Statement? 2

2. Implementation 3
2.1 Feature Enablement 3
2.2 Access Key for an Activity Provider 3

3. xAPI Integration 4
4. Authentication Requirements 5

Workflow Description 5
4.1 Application Registration 6
4.2 Required registration information 6

5. oAuth 2.0 Requests 7
5.1 For Authorization Grant Flow: 7

URL 7
Response 7
Obtain Access Token 8
Request 8
Response 9
Using the Access Token 9

5.2 For Implicit Grant Flow: 10
URL 10
Response 10
Using the Access Token 11

5.3 For Clients Credentials Grant Flow: 12
Request 12
Request 12
Response 13

6. User Authorization – Consent Screen 15
6.1 Consent Screen Functionality 15
6.2 Authentication Possibilities 16

SSO Authentication 16
No SSO Authentication 16

7. xAPI Statements 17
7.1 Code Example 18
7.2 Actor Variables 19
7.3 Supported Verbs 20
7.4 Object, Results, and Context Properties 23
7.5 xAPI course transcript updates via xAPI statement 25

Table of contents
8. Export xAPI statements via API 26

8.1 Export xAPI statements call structure: 26
Response 26

8.2 Performing a system-wide statement export: 27
9. Document API 28

9.1 State API 28
9.2 The Activity Profile API 29
9.3 The Agent Profile API 29
9.4 Voided Statements 29

10. Considerations 30
11. Transcript Integration 30

11.1 Transcript View 31
12. Appendix 32

12.1 TinCan Restful API 32
12.2 Statement Example 36
12.3 Creating an xAPI Activity Provider 38

Getting started 38
Referencing Libraries 38
Obtain OAuth2 Token 38
Getting the token 39
Initialize XAPIWrapper 39
Send a Sample Statement 40
Send the statement to the LRS: 40
Documentation Links 40

12.4 Error Codes 41

1

1. CSOD xAPI (Tin Can) Support

1.1 Introduction
The xAPI (also known as Tin Can API or Experience API) is the next generation e-learning
protocol that enables recording of a wide range of learning experience, including native
mobile applications, team-based e-learning, and more.
With this enhancement, you will be able to record and export xAPI learning experiences that
occur out of the LMS.
The xAPI protocol does not require the content to be structured in a specific format. It allows
with the freedom of defining ANY kind of activity as a Learning Experience that can be
captured on a Learning Record Store (LRS).

The xAPI is owned by ADL.

Last revised: December 4, 2024

https://www.adlnet.gov/

2

1.2 How does it work?
Learning occurs everywhere and in many different formats such as social learning activities,
collaborative activities, and mobile learning activities. All of those activities can be recorded
on the xAPI Statement form; a simple construct of “noun, verb, object” or “I did this”. The
statements are sent securely to the LRS that records the statements. The recorded data can
be shared with the LMS, LRSs, and reporting systems.

1.3 What is a Statement?
• A simple construct that tracks an aspect of a learning experience.

• A set of several Statements may be used to track complete details about a learning experience. For ex-
ample; tracking a question-level data.

• The statement consists of:

Examples:

• “Michael completed Compliance Training”

• “Judy performed CPR 9 out of 12 times”

• “Kelly read Informal Learning for Organizations article”

• “Juana added a new post: “The role of talent management in small organization”

<Actor (learner)> <verb> <object> <result>with in <context>

3

2. Implementation

2.1 Feature Enablement
Upon release, this functionality is automatically enabled for all organizations using the
Learning module.
A Learning Record Store (LRS) will be available per portal to enable recording of xAPI
statements.

2.2 Access Key for an Activity Provider
When integrating xAPI into your content, an access key needs to be provided per Activity
Provider, any system or thing that can be outfitted to generate Tin Can Statements based on
actions that occur with it.
An Activity Provider (AP) definition by ADL:
The software object that is communicating with the LRS to record information about a
learning experience. May be similar to a SCORM package in that it is possible to bundle
learning assets with the software object that performs this communication, but an Activity
Provider may also be separate from the experience it is reporting about.

It is advised to define a separate AP for each content provider, platform, or application for
analysis consumptions.

Note: To get an Access Key for an AP, contact Global Customer Support (GCS).

4

3. xAPI Integration
There are different approaches for integrating xAPI within content. xAPI Statements can be
sent directly from a web or a mobile application or by a browser extension that provides users
with an interface to send statements to the LRS.
The browser extension, also called Bookmarklet is a simple tool that helps communicating
xAPI statements to the LRS.
More information as well as code resources can be found at ADLNet github resources.

Regardless the selected approach of integration, The AP represents the system that sends
data to the LRS.

http://adlnet.github.io/

5

4. Authentication Requirements
CSOD authentication method is based on oAuth 2.0 protocol. That means the oAuth 2.0 must
be integrated to utilize CSOD LRS.

Protocol Flow

Workflow Description
Step 1: Register the application to establish communication between application and the
service.

Step 2: Adhere to one or more of the following Grant Flow. Authorize end point is used to
generate appropriate Code/Token:

a. Authorization Grant Flow

b. Implicit Grant Flow

c. Client Credentials Grant Flow

Step 3: Generate Access Token for the client (only needed for Authorization Grant Flow).

Step 4: Using the Access token, create a Bearer token request to access the xAPI.

http://oauth.net/2/

6

4.1 Application Registration
Before using the oAuth service, the application must be registered with the service.
To get an application registered, contact Cornerstone through a Global Customer Support
(GCS) case.

There are three supported grant flows:
• Authorization Grant Flow - Relevant for server-side Applications. Used to obtain both

access tokens and refresh tokens and is optimized for confidential clients.
• Implicit Grant Flow - Relevant for Mobile Apps or Web Applications. Used to obtain access

tokens.
• Client Credentials – Enables for a back-end integration between a trusted vendor and

Cornerstone. Relevant for server to server communication.

4.2 Required registration information
The following information is required for application registration:

Application Name – Up to 150 characters. Accented characters are not supported.

Redirect URI – A separate redirect URI per application. This is an absolute URL. It is the
location where the AP resides and it knows how to extract the returned oAuth token.

Grant Types – Authorization/Implicit/Client Credentials

Scope – Two available scopes for importing/exporting xAPI statements at the user level
(choose one or both):

1. Write/mine – can write statements or documents that relate to the logged in user.
2. Read/mine – can view statements or document that relate to the logged in user.

One available scope for exporting xAPI statements at the system level:
1. Read – can view statements or documents for all users in the portal (might be

restricted based on the viewing user’s permissions).

Note: For Client Credentials grant type, additional settings may be required.

Items received from CSOD:

Client Id: Unique random publicly exposed string that is used by the authorization server to
identify the client (e.g., tenant1AP1).

Client Secret: Secret key that is used to authenticate the identity of the client to the
authorization server and must be kept confidential (e.g., 90f3fjaFOs23r).

7

5. oAuth 2.0 Requests

5.1 For Authorization Grant Flow:
URL

HTTP Verb = GET
Headers – N/A Body – N/A
<Client_ID>: Valid api_id of the application
<RedirectUri>: One of the registered redirect uri for the application (For Phase only one
redirect_URI can be registered per application)
<scope>: One or more of the valid scopes registered for the application. Multiple scopes are
space delimited.
<response_type>: code
<State>: Opaque value, optional. check for XSS and reject for illegal values

Response
The system will redirect the user to the Consent screen based on the authentication method

as described in the Authentication Possibilities section.

services/api/oauth2/authorize?client_id=<ClientID>&redirect_uri=<RedirectUri>&sc
ope=<Scope>&response_type=code&state=<State>

Item Value

Status 304/ Redirect

Headers

Body

8

Obtain Access Token
To obtain the access token, the client makes a request to the token endpoint by sending
the following parameters using the “application/x-www-form-urlencoded” format with a
character encoding of UTF-8 in the HTTP request entity-body.

Request

<code>: Valid authorization code for the application
<RedirectUri> : One of the registered redirect uri for the authorization code generated(For
Phase only one redirect_URI can be registered per application)
<grant_type>: authorization_code
<Client Id>: The client Id received when the application was registered.
<Client Secret>: The client secret received when the application was registered.

Item Value

URL /services/api/oauth2/token

HTTP Verb POST

Headers Content-type=x-www-form-urlencoded

Body

x-www-form-urlencoded:
code : <Code>
grant_type: authorization_code redirect_uri: <Redirect URI> client_id:
<Client Id> client_secret: <Client Secret>

code=eWMyODk3NWNhODg1NjR5&grant_type=authorization_
code&redir ect_uri=https%3A%2F%2Fwww.google.com&client_
id=sadqd2ad&client_s ecret=asdji398hdoiahd8hdsahd3

http://localhost/devrelease/services/api/oauth2/token?client_id=1lc2hhydmseh3&redirect_uri=http%3A%2F%2Fgoogle.com&scope=read&grant_type=authorization_code&code=dmM0OTRiMDhjYjI4MzR2&client_secret=Rs0s4HSSHnM9qkyTl6oIPZcMo%2FMKhhpkeqSb0iu%2F4Y%2BWMuVwBTZQ3kuYRnehjqbaBRNUUcEvg1ty9lk1EB5Dnw%3D%3D
http://2fwww.google.com/

9

Response

<access_token>: Valid access token string
<scope>: scope value(s) specified while Authorizing (space delimited)
<expires_in>: TTL in sec
<refresh_token>: refresh token value defined for the application
<grant_type>: Authorization grant type used while Authorizing the request

Using the Access Token
To use the access token, create an Authorization header with the token that was received in
either the grant methods described above.
Example Request:

<Access Token>: valid token of the application

Item Value

Status 201 / Created

Headers content-type=x-www-form-urlencoded

Body

{
“access_token”:”2YotnFZFEjr1zCsicMWpAA”, “scope”:”read/mine write/
mine”, “expires_in”:3200, “refresh_token”:”tGzv3JOkF0XG5Qx2TlKWIA”,
“grant_type”:”authorization_code”
}

URL /services/api/LRS/statements

HTTP Verb GET

Headers Authorization: Bearer <Access Token>

Body N/A

10

5.2 For Implicit Grant Flow:
URL

HTTP Verb = GET
Headers – N/A Body – N/A
<Client_ID>: valid api_id of the application
<RedirectUri> : One of the registered redirect uri for the application. (For Phase only one
redirect_URI can be registered per application)
<scope>: One of the valid scopes registered for the application
<response_type>:token
<State>:opaque value. optional. check for XSS and reject for illegal values

Response

The system will redirect the user to the Consent screen based on the authentication method
as described in the Authentication Possibilities section.

services/api/oauth2/authorize?client_id=<ClientID>&redirect_uri=<RedirectUri>&sc
ope=<Scope>&response_type=token&state=<State>

Item Value

Status 302/ Redirect

Headers

Body

http://localhost/devrelease/services/api/oauth2/authorize?client_id=1lc2hhydmseh3&redirect_uri=http%3A%2F%2Fgoogle.com&scope=read&grant_type=nothing&response_type=code&state=hello
http://localhost/devrelease/services/api/oauth2/authorize?client_id=1lc2hhydmseh3&redirect_uri=http%3A%2F%2Fgoogle.com&scope=read&grant_type=nothing&response_type=code&state=hello

11

Using the Access Token
To use the access token, create an Authorization header with the token that was received in
either the grant methods described above.
Example Request:

<Access Token>: Valid token of the application

URL /services/api/LRS/statements

HTTP Verb GET

Headers Authorization: Bearer <Access Token>

Body N/A

12

5.3 For Clients Credentials Grant Flow:
The client makes a request to the token endpoint by sending the following parameters using
the “application/x-www-form-urlencoded” format with a character encoding of UTF-8 in the
HTTP request entity-body.

Request

Request

URL /services/api/oauth2/token

HTTP Verb POST

Headers

Content-type=x-www-form-urlencoded
Basic Authentication (UserName:ClientId,Password:ClientSecret) will
generate Authorization: Basic

TsfjMmhoeWRtc2VoMzpSczBzNEhTU0huTTlx
a3lUbDZvSVBaY01vL01LaGhwa2VxU2IwaXUvNFkrV011VndCVFpRM2t
1WVJuZWhqcWJhQlJOVVVjRXZnMXR5OWxrMUVCNURudz09

Body

x-www-form-urlencoded: scope:<scope>
grant_type: client_credentials user_id: <user_id>

scope=read&grant_type=client_credentials&user_id=1

URL /services/api/oauth2/token

HTTP Verb POST

Headers Content-type=x-www-form-urlencoded

Body

x-www-form-urlencoded: scope:<scope>
grant_type: client_credentials client_id:<client_id>
client_secret:<client_secret>
user_id:<user_id>

scope=read&grant_type=client_credentials&user_id=1&client_id
=TsfjMmhoeWRtc2&client_
secret=WJhQlJOVVVjRXZnMXR5OWxrMUVCNURudz09

http://localhost/devrelease/services/api/oauth2/token?client_id=1lc2hhydmseh3&redirect_uri=http%3A%2F%2Fgoogle.com&scope=read&grant_type=authorization_code&code=dmM0OTRiMDhjYjI4MzR2&client_secret=Rs0s4HSSHnM9qkyTl6oIPZcMo%2FMKhhpkeqSb0iu%2F4Y%2BWMuVwBTZQ3kuYRnehjqbaBRNUUcEvg1ty9lk1EB5Dnw%3D%3D
http://localhost/devrelease/services/api/oauth2/token?client_id=1lc2hhydmseh3&redirect_uri=http%3A%2F%2Fgoogle.com&scope=read&grant_type=authorization_code&code=dmM0OTRiMDhjYjI4MzR2&client_secret=Rs0s4HSSHnM9qkyTl6oIPZcMo%2FMKhhpkeqSb0iu%2F4Y%2BWMuVwBTZQ3kuYRnehjqbaBRNUUcEvg1ty9lk1EB5Dnw%3D%3D

13

<grant_type>: client_credentials
<scope>: requesting scope
<user_id>: Active and NOT locked out for a given portal
Note: client_id and client_secret can be passed in the header as base64 encoded
Authorization value or in the POST request body. The header values take precedence over the
POST request body.

Response

<access_token>: Valid access token string
<scope>: scope value(s) specified while Authorizing (space delimited)
<expires_in>: TTL in sec
<token_type>: Bearer token
<refresh_token>: value is null as refresh token is not generated for this grant type

Refreshing logic:
There is no special protocol to refresh an access token using the client credentials
authorization flow. Client application simply requests a new token once the previous token has
expired.

Think of Client Credentials as a refresh token that doesn’t expire. Refresh Tokens exist to
prevent you from having to reauthorize a user so often. But since there is no third-party in the
Client Credentials exchange, there is no reason to have a refresh token.
Validations:

Status 200 / OK

Headers
Content-Type: application/json;charset=UTF-8 Cache-Control: no-store
Pragma: no-cache

Body

{
“access_token”:”2YotnFZFEjr1zCsicMWpAA”, “scope”:”read”, “expires_
in”:3200, “token_type”:”bearer”,”refresh_token”:null
}

14

If multiple requests are made using the same valid code, existing access token will be
returned. The Expires_in value should be reflected with the new value. (the time difference
between now and the expiration time of the token)
If the token is invalid, return a error that the token is expired. (client should use the refresh
token to generate a new token)
Admin UI Validations:

1. Redirect URL is not mandatory for Client Credentials.
2. If more than one Grant type is selected, and one of which is Client Credentials; then show

the error message: Client credentials cannot be combined with other grant types.

Revoke:

Client ID Revoke: When a Client ID is revoked, we cannot reactivate or use that client ID. The
access tokens and refresh tokesn associated with this client ID should be revoked too.

UI: A new link to revoke the Client ID should be added to the Application Details grid on the App
registration Page. The revoked Client IDs will not show up in the list of Client IDs displayed in
the grid.

Database Changes: Add a new nullable column “revoked_date” to sts_oauth2_clients. If this
column has a date that implies the client ID is revoked.

Access/ Refresh Token Revoke: When an access token or refresh token is revoked, if that
token is sued in service request error should be displayed.

UI: A textbox should be added to the App registration Page to enter teh token that needs to be
revoked. Same text box will be used to enter access and refresh token.

Database Changes: Add a new nullable column “revoked_date” to dbo.sts_oauth2_tokens
and dbo.sts_oauth2_refresh_tokens. If this column has a date that implies the token is
revoked.

15

6. User Authorization – Consent Screen
As part of the oAuth 2.0 protocol, the user is required to authorize access to the application to
read or write data to CSOD system.
Note: This is relevant only when using Implicit or Authorization grant types. The Consent
screen does not appear when using Client Credentials grant type.
When the application accepts the authentication request, the user is redirected to Consent
page that displays an authorization message that requests the user authorizing the
application to send data to the portal. The redirection to the Consent page will be intercepted
if the user is not authenticated.
The consent screen is opened on CSOD portal and includes the following message:
<Application Name> has requested to access SCOPE information from your account in
Cornerstone OnDemand with the following scope(s): <Scopes>
Allow and Deny buttons are available.

6.1 Consent Screen Functionality
Upon clicking Allow, the Consent page is closed and the system allows the application to
access the user’s xAPI data.
Upon clicking Deny, the Consent page is closed and the system rejects the authentication
request.
If the user did not click Allow or Deny within 5 minutes, the session is expired and the user is
directed to a timeout expired message.

16

6.2 Authentication Possibilities
There two possible scenarios:

SSO Authentication
If SSO is configured for the portal, the user will authenticate using their portal’s SSO
configuration and will be redirected to the Consent page.

No SSO Authentication
If no SSO is configured for that portal, the page will be redirected to the CSOD Login page
configured for that portal and the user will be required to enter UserName/Password.
Upon successfully log-in the system, the user will be redirected to Consent page.

17

7. xAPI Statements

xAPI statements can be sent to CSOD LRS. The statement structure and properties must be
compliant with xAPI v 1.0.0 provided by ADL.

Statement Supported Properties:

Property Type Description

id UUID UUID assigned by LRS if not set by the Activity Provider.

actor Object Who the Statement is about, as an Agent or Group Object.
Represents the “I” in “I Did This”.

verb Object Action of the Learner or Team Object. Represents the
“Did” in “I Did This”.

object Object

Activity, Agent, or another Statement that is the Object of
the Statement. Represents the “This” in “I Did This”. Note
that Objects which are provided as a value for this field
should include an “objectType” field. If not specified, the
Object is assumed to be an Activity.

result Object Result Object, further details representing a measured
outcome relevant to the specified Verb.

context Object
Context that gives the Statement more meaning.
Examples: a team the Actor is working with, altitude at
which a scenario was attempted in a flight simulator.

timestamp Date/Time
Timestamp (Formatted according to ISO 8601) of when the
events described within this Statement occurred. If not
provided, LRS should set this to the value of “stored” time.

stored Date/Time Timestamp (Formatted according to ISO 8601) of when
this Statement was recorded. Set by LRS.

authority Object
Agent who is asserting this Statement is true. Verified by
the LRS based on authentication, and set by LRS if left
blank.

version Version
Only version 1.0.0 is supported. The system does not
enforce the required X-Experience-API-Version header, but
when in-use, it must be between 1.0.0 and less than 1.1.0.

attachments
Array of
attachment
Objects

Not supported

https://github.com/adlnet/xAPI-Spec/blob/1.0.0/xAPI.md
https://www.adlnet.gov/

18

7.1 Code Example
Example of a simple statement (line breaks are for display purposes only):

More examples are available on the Appendix

{
“id”: “ab123cd4-e56f-g7h8-i90j-l234m5n67m8m”,
“actor”:{

“objectType”: “Agent”,
“mbox”:”mailto:username@csod.com”

},
“verb”:{

“id”:”http: //http://activitystrea.ms/schema/1.0/watch”,
“display”:{
“en-US”:”Watched”
}

},
“object”:{

“definition”: {
“type”: “http://activitystrea.ms/schema/1.0/page”,
“name”: {

“en-US”: “Example Video”
}

},
“id”: “https://www.examplevideo.com/”,
“objectType”: “Activity”
}

}

mailto:username@csod.com
http://activitystrea.ms/schema/1.0/watch
http://activitystrea.ms/schema/1.0/page
http://www.examplevideo.com/

19

7.2 Actor Variables
An Agent value must be one of the following types:
mailto IRI - “mailto:agent@example.com” – The email of the user within Cornerstone’s system.
Account - A user account recognized by Cornerstone.
Example:

For Groups: Anonymous/ Identified

Note: Users must be identifiable on the portal to be valid as Agents.
An Identified Group and an Agent must use different identifiers. An identified group that has
the same identifier as an agent will be rejected.

{“account”: { “name”: “<username>”,”homePage”: “<portal url>”}, “objectType”: “Agent” }
<username> - The user’s username or user-ref in the portal.
<portal url> - The base url for the portal.

mailto:agent@example.com
https://qa05.csod.com/

20

7.3 Supported Verbs
Cornerstone LRS allows sending predefined verbs as described in the table below.
If a statement is sent with a different verb, the system will respond with an HTTP 403
Forbidden response

Label Description ID (IRI)

abandoned The verb "Abandoned" indicates
that the AU session was abnormally
terminated by a learner's action (or
due to a system failure).

https://w3id.org/xapi/adl/verbs/
abandoned

answered Indicates the actor replied to
a question, where the object is
generally an activity representing
the question. The text of the answer
will often be included in the response
inside result.

http://adlnet.gov/expapi/verbs/
answered

attempted Indicates the actor made an effort
to access the object. An attempt
statement without additional
activities could be considered
incomplete in some cases.

http://adlnet.gov/expapi/verbs/
attempted

attended Indicates the actor was present at a
virtual or physical event or activity.

http://adlnet.gov/expapi/verbs/
attended

commented Indicates the actor provided digital or
written annotations on or about an
object.

http://adlnet.gov/expapi/verbs/
commented

completed Indicates the actor finished or
concluded the activity normally.

http://adlnet.gov/expapi/verbs/
completed

exited Indicates the actor intentionally
departed from the activity or object.

http://adlnet.gov/expapi/verbs/
exited

experienced Indicates the actor only encountered
the object, and is applicable
in situations where a specific
achievement or completion is not
required.

http://adlnet.gov/expapi/verbs/
experienced

failed Indicates the actor did not
successfully pass an activity to a level
of predetermined satisfaction.

http://adlnet.gov/expapi/verbs/failed

initialized Indicates the activity provider
has determined that the actor
successfully started an activity.

http://adlnet.gov/expapi/verbs/
initialized

interacted Indicates the actor engaged with a
physical or virtual object.

http://adlnet.gov/expapi/verbs/
interacted

https://w3id.org/xapi/adl/verbs/abandoned
https://w3id.org/xapi/adl/verbs/abandoned
http://adlnet.gov/expapi/verbs/answered
http://adlnet.gov/expapi/verbs/answered
http://adlnet.gov/expapi/verbs/attempted
http://adlnet.gov/expapi/verbs/attempted
http://adlnet.gov/expapi/verbs/attended
http://adlnet.gov/expapi/verbs/attended
http://adlnet.gov/expapi/verbs/commented
http://adlnet.gov/expapi/verbs/commented
http://adlnet.gov/expapi/verbs/completed
http://adlnet.gov/expapi/verbs/completed
http://adlnet.gov/expapi/verbs/exited
http://adlnet.gov/expapi/verbs/exited
http://adlnet.gov/expapi/verbs/experienced
http://adlnet.gov/expapi/verbs/experienced
http://adlnet.gov/expapi/verbs/failed
http://adlnet.gov/expapi/verbs/initialized
http://adlnet.gov/expapi/verbs/initialized
http://adlnet.gov/expapi/verbs/interacted
http://adlnet.gov/expapi/verbs/interacted

21

launched Indicates the actor attempted to start
an activity.

http://adlnet.gov/expapi/verbs/
launched

liked Indicates that the actor marked the
object as an item of special interest.
The “like” verb is considered to be an
alias of “favorite”. The two verbs are
semantically identical.

http://activitystrea.ms/schema/1.0/
like

mastered Indicates the highest level of
comprehension or competence the
actor performed in an activity.

http://adlnet.gov/expapi/verbs/
mastered

passed Indicates the actor successfully
passed an activity to a level of
predetermined satisfaction.

http://adlnet.gov/expapi/verbs/
passed

preferred Indicates the selected choices,
favored options or settings of an
actor in relation to an object or
activity.

http://adlnet.gov/expapi/verbs/
preferred

progressed Indicates a value of how much of
an actor has advanced or moved
through an activity.

http://adlnet.gov/expapi/verbs/
progressed

read Indicates that the actor read the
object. This is typically only applicable
for objects representing printed or
written content, such as a book, a
message or a comment. The “read”
verb is a more specific form of the
“consume”, “experience” and “play”
verbs.

http://activitystrea.ms/schema/1.0/
read

registered Indicates the actor is officially
enrolled or inducted in an activity.

http://adlnet.gov/expapi/verbs/
registered

responded Indicates an actor reacted or replied
to an object.

http://adlnet.gov/expapi/verbs/
responded

resumed Indicates the application has
determined that the actor continued
or reopened a suspended attempt on
an activity.

http://adlnet.gov/expapi/verbs/
resumed

scored Indicates a numerical value related
to an actor’s performance on an
activity.

http://adlnet.gov/expapi/verbs/
scored

shared Indicates the actor’s intent to openly
provide access to an object of
common interest to other actors or
groups.

http://adlnet.gov/expapi/verbs/
shared

suspended Indicates the status of a temporarily
halted activity when an actor’s intent
is returning to the object or activity at
a later time.

http://adlnet.gov/expapi/verbs/
suspended

http://adlnet.gov/expapi/verbs/launched
http://adlnet.gov/expapi/verbs/launched
http://activitystrea.ms/schema/1.0/like
http://activitystrea.ms/schema/1.0/like
http://adlnet.gov/expapi/verbs/mastered
http://adlnet.gov/expapi/verbs/mastered
http://adlnet.gov/expapi/verbs/passed
http://adlnet.gov/expapi/verbs/passed
http://adlnet.gov/expapi/verbs/preferred
http://adlnet.gov/expapi/verbs/preferred
http://adlnet.gov/expapi/verbs/progressed
http://adlnet.gov/expapi/verbs/progressed
http://activitystrea.ms/schema/1.0/read
http://activitystrea.ms/schema/1.0/read
http://adlnet.gov/expapi/verbs/registered
http://adlnet.gov/expapi/verbs/registered
http://adlnet.gov/expapi/verbs/responded
http://adlnet.gov/expapi/verbs/responded
http://adlnet.gov/expapi/verbs/resumed
http://adlnet.gov/expapi/verbs/resumed
http://adlnet.gov/expapi/verbs/scored
http://adlnet.gov/expapi/verbs/scored
http://adlnet.gov/expapi/verbs/shared
http://adlnet.gov/expapi/verbs/shared
http://adlnet.gov/expapi/verbs/suspended
http://adlnet.gov/expapi/verbs/suspended

22

terminated Indicates that the actor successfully
ended an activity.

http://adlnet.gov/expapi/verbs/
terminated

viewed Indicates that the actor has viewed
the object.

http://id.tincanapi.com/verb/viewed

voided A special reserved verb used by a LRS
or application to mark a statement as
invalid. See the xAPI specification for
details on Voided statements.

http://adlnet.gov/expapi/verbs/
voided

watched Indicates that the actor has watched
the object. This verb is typically
applicable only when the object
represents dynamic, visible content
such as a movie, a television show
or a public performance. This verb
is a more specific form of the verbs
“experience”, “play” and “consume”.

http://activitystrea.ms/schema/1.0/
watch

http://adlnet.gov/expapi/verbs/terminated
http://adlnet.gov/expapi/verbs/terminated
http://id.tincanapi.com/verb/viewed
http://adlnet.gov/expapi/verbs/voided
http://adlnet.gov/expapi/verbs/voided
http://activitystrea.ms/schema/1.0/watch
http://activitystrea.ms/schema/1.0/watch

23

7.4 Object, Results, and Context Properties
Property Description

Object Properties ID An identifier for a single unique Activity.
Required.

Definition Optional Metadata

ObjectType Optional. All types are supported. If not
specified, the objectType is assumed to be
“Activity”.

Activity definition Name DescriptionType MoreInfo
Interaction properties interactionType
correctResponsesPattern
Extensions

Result Properties Score An optional numeric field. Properties: scaled,
raw, min, max.
Note: There is no validation if the provided raw
score is in between min and max.

Success Boolean, Indicates whether or not the
attempt on the Activity was successful.

Completion Boolean, Indicates whether or not the Activity
was completed.

Response String. A response appropriately formatted
for the given Activity.

Duration Formatted according to ISO 8601 with a
precision of 0.01 seconds, Period of time over
which the Statement occurred.

Extensions Object, A map of other properties as needed

24

Property Description
Context Properties Registration – UUID. The registration that the Statement is

associated with.

Instructor Agent/Group. Instructor that the Statement
relates to, if not included as the Actor of the
statement.

Team Group. Team that this Statement relates to, if
not included as the Actor of the statement.

ContextActivities A map of the types of learning activity
context that this Statement is related to.
Valid context types are: “parent”, “grouping”,
“category” and “other”

Revision String. Revision of the learning activity
associated with this Statement. Format is
free.

Platform String. Platform used in the experience of this
learning activity.

Language String (RFC 5646). Code representing the
language in which the experience being
recorded in this Statement (mainly) occurred
in, if applicable and known.

Statement Statement Reference. Another Statement
which should be considered as context for
this Statement.

Note: The system does not validate that the
referenced statement exists in the LRS.

Extensions Object. A map of any other domain-specific
context relevant to this Statement.

25

Values User’s Transcript update
Statement
Properties

verb – Passed/Failed/Completed/
Attempted
AND
result.completion: true

The course will be marked as ‘Completed’
and move to the completed tab. Progress
bar will be set to 100% in the training
details page. Completion date will be
based on the statement’s timestamp.

verb – Passed/Failed/Completed/
Attempted
AND
result.completion: true
AND
result.score.scaled /result.score.
raw+result.score.max has a value

The course will be marked as ‘Completed’
and move to the completed tab. Progress
bar will be set to 100% in the training
details page. Completion date will be
based on the statement’s timestamp.
In addition, the score will be updated in
the training details page based on the
score sent.

verb – Terminated
AND
result.duration has a value

View Time in training details page will be
updated based on the result duration
value.

7.5 xAPI course transcript updates via
xAPI statement
xAPI statements can make changes to the user’s transcript if they meet the criteria shown in
the table below, and as long as the course has not been in a “Completed” status before the
xAPI statement was sent.

26

8. Export xAPI statements via API
xAPI statements can be exported from CSOD’s LRS using API.
For example, you could export the statements to a third party LRS.

8.1 Export xAPI statements call structure:
URL

HTTP Verb = GET
Headers - X-Experience-API-Version
Body – N/A
Parameters:
<verb>: Filter statements according to verb URI
<agent>: The learner who performs the action
<related_agents>: True or False
<activity>: Filter statements according to a specific Activity ID
<related_activities>: True or False
<registration>: Filter statements according to a specific Registration ID
<statementId>: Filter statements according to a specific Statement ID
<voidedStatementId>: Filter statements according to a specific Voided Statement ID
<since>: Filter results from a specific date/time
<until>: Filter results until a specific date/time
<limit>: Limit the number of statements per one page
<last_statement_id>: When using pagination, provide the last statement ID from the last call

Response

https://<portal_name>.csod.com/services/api/LRS/
statements?format=exact&verb=https%3A%2F%2Fw3id.
org%2Fxapi%2Fadl%2Fverbs%2Fabandoned&agent=1&related_agents=False&activity=1&related_
activities=False®istration=1&statementId=1&voidedStatementId=1&since=06%2F08%2F2022%20
5%3A58%20PM&until=06%2F29%2F2022%205%3A58%20PM&limit=1000

Item Value

Status 200/ OK

Headers Standard HTTP headers

Body List of statements

27

8.2 Performing a system-wide statement export:
First, create a call with the highest limit allowed by the system.
If, for example, the portal name is “exportexample” and the highest limit is 32,000 statements,
the call should be:
https://exportexample.csod.com/services/api/LRS/statements?format=exact&limit=32000

Assuming that not all statements were exported with the first call, following calls should use
the <last_statement_id> parameter to export the rest of the statements.
If, for example, the ID of the last statement in a call was “33913d4a-d6c3-4c6f-804b-
4949c6fd32f6”, the next call should be:

https://exportexample.csod.com/services/api/LRS/statements?format=exact&lastStatem
entId=33913d4a-d6c3-4c6f-804b-4949c6fd32f6&limit=32000

28

9. Document API
The Document API is a set of API resources that enable storage and retrieval of data. This
is also a way for passing data between a Training Delivery System such as an LMS and an
Activity Provider.

The data stored in the Document APIs represents the current situation at a given point in
time similar to SuspendData on SCORM. For example, this functionality is recommended for
bookmarking data.

There is no limitation on the number “Documents” that can be stored as Document API.

Using a POST method instead of a PUT allows you to update individual properties of an object
contained in a JSON document.

Note: The LRS only supports documents in the JSON format.

9.1 State API
State API is a scratch area for Activity Providers. Documents can be stored on two different
levels:

Per user, per activity basis. For example: storing bookmarking data.

Per registration, per user, per activity basis. For example: storing data specific to a particular
launch or attempt

It is the Activity Provider’s responsibly to clean up the data that is no longer required. PUT,
POST, GET, and DELETE are supported for Single Document.
POST, GET, and DELETE are supported for Multiple Document.

More information on the supported methods is available on the Appendix.

29

9.2 The Activity Profile API
The Activity Profile API is similar to the State API, allowing for arbitrary key / document pairs
to be saved which are related to an Activity. The Activity Profile API is used to store activity
wide documents that aren’t specific to an individual learner. This is used in any scenario
where interaction between learners is required. For example collaboration activities, social
interaction, or competition.
The Activity Profile API also includes a method to retrieve a full description of an Activity from
the LRS.

More information on the supported methods is available on the Appendix

9.3 The Agent Profile API
The Agent Profile API is similar to the State API, allowing for arbitrary key / document pairs
to be saved which are related to an Agent. For example: user personal information and user
settings. Documents can be stored and retrieved for Agents across Activities.
The Agent Profile API also includes a method to retrieve a special Object with combined
information about an Agent derived from an outside service, such as a directory service.

More information on the supported methods is available on the Appendix.

9.4 Voided Statements
The Voided Statements functionality enables for making existing statements invalid. Since
statements are immutable the only way to fix a statement is by voiding it and creating the new
proper statement. Additionally a voided statement itself can’t be voided.

When a statement is voided the flags it as a voided statement that cannot be retrieved in a
GET call.

Note: The system does not validate that the statementRef references is a real statement in
the system, a voiding statement could reference a non-existence statement in which change
it will not change anything.

https://experienceapi.com/deep-dive-agent-profile/

30

10. Considerations
This is an initial release of xAPI integration and the functionality is provided through the back-
end. There is no integration with the LMS’s user interface or with reporting.
Reports are available through the back-end.
This version is mainly suited for early adopter clients who want to use CSOD LRS.

11. Transcript Integration
Statements of completed activities may appear on the User Transcript as Completed records.

Permission Description

xAPI - View Learning
Records on Transcript

Allows users to view xAPI Learning Records on the
Transcript.

31

11.1 Transcript View
Completed xAPI Learning Records may be visible under the Completed filter on the Transcript.
Users can launch completed xAPI records when a proper URL was provided as the object ID.

The information available for xAPI Learning Record includes the following items:
• Title - This field displays the xAPI Verb and the name of the xAPI learning record.
• Completed - This field displays the date the xAPI learning record completed as defined on

the statement.
• Status - This field displays the status of the xAPI learning record. Note: The status for an

xAPI learning record will always be set to Complete, because only completed learning
records display on the transcript.

The following verbs are supported:
• Attended
• Completed
• Experienced
• Mastered
• Passed
• Read
• Watched
• Viewed

Please note that while the verb ID must be one of the mentioned above, the verb display, which
will appear in the user’s transcript, is not enforced by the system and is expected to comply
with the Verb Display Learning Record Provider Requirements: “The “display” property MUST
be used to illustrate the meaning which is already determined by the Verb IRI”.

To display a completed activity on Transcript, the xAPI statement must include the following
convention under the “contextActivity” attribute:

},
“context”:{

“contextActivities”:{
“category”:[

{
“id”:”http://www.cornerstoneondemand.com/xapi/lms/transcript_display”

}
]

}
}

http://www.cornerstoneondemand.com/xapi/lms/transcript_display

32

12. Appendix
12.1 TinCan Restful API

URL Method Url Params Body Params Successful
Result

Statement API

/services/api/LRS/statements GET statementId
voidedStatementId
agent
verb activity
registration
related_activities
related_agents
since
until limit format
attachments
ascending

Note: format set to “canonical” is not supported. Filter conditions for StatementRefs is not
supported.

/services/api/LRS/statements PUT

/services/api/LRS/statements POST

Document APIs

State API

/services/api/LRS/activities/
state

GET activityId IRI The
Activity id
associated with
this state

agent JSON
object The Agent
associated with
this state

stateId GUID

None 200 OK
Returns the
State JSON
document

/services/api/LRS/activities/
state

POST The JSON
document to
be stored

204 No
Content
State JSON
document is
stored

33

/services/api/LRS/activities/
state

PUT
The id for this
state, within the
given context

[registration] GUID
(Optional)
The registration
id associated with
this state

The JSON
document
to be
updated

204 No
Content State
JSON document is
updated

/services/api/LRS/activities/
state

DELETE None 204 No
Content State
JSON document is
deleted

/services/api/LRS/activities/
state

GET
multiple

activityId IRI The
Activity id
associated with
this state

agent JSON
object The Agent
associated with
this state

[registration] GUID
(Optional)
The registration
id associated with
this state

[since] Timestamp
(Optional)
Only ids of states
stored since
the specified
timestamp
(exclusive) are
returned

None 200 OK
Returns array of
State Ids

/services/api/LRS/activities/
state

DELETE
multiple

None 204 No
Content State
document are
deleted

Activity Profile API

/services/api/LRS/activities GET activityId IRI
The id associated
with the Activities
to load

None 200 OK
Full Activity JSON

34

/services/api/LRS/activities/
profile

GET activityId IRI The
Activity id
associated with
this profile

profileId GUID The
profile id
associated with
this

None 200 OK
Returns the Activity
Profile JSON
document

/services/api/LRS/activities/
profile

POST The JSON
document
to be

204 No
Content Activity
Profile

profile stored JSON
document is stored

/services/api/LRS/activities/
profile

PUT The JSON
document
to be
updated

204 No
Content Activity
Profile JSON
document is
updated

/services/api/LRS/activities/
profile

DELETE None 204 No
Content Activity
Profile JSON
document is
deleted

/services/api/LRS/activities/
profile

GET
multiple activityId IRI The

Activity id
associated with
this profile

[since] Timestamp
(Optional)
Only ids of profiles
stored since
the specified
timestamp
(exclusive) are
returned

None 200 OK
Returns array of
Activity Profile Ids

Agent Profile API
/services/api/LRS/agents GET agent JSON

object The Agent
representation
to use in fetching
expanded Agent
information

None 200 OK
Person JSON object

35

/services/api/LRS/agents/
current

GET None None 200 OK
Current Logged in
Agent JSON object

/services/api/LRS/agents/
profile

GET agent JSON
object The Agent
associated with
this profile

profileId GUID The
profile id

None 200 OK
Returns the Agent
Profile JSON
document

/services/api/LRS/agents/
profile

POST The JSON 204 No

associated with
this profile

document
to be
stored

Content Agent
Profile JSON
document is stored

/services/api/LRS/agents/
profile

PUT The JSON
document
to be
updated

204 No
Content Agent
Profile JSON
document is
updated

/services/api/LRS/agents/
profile

DELETE None 204 No
Content Agent
Profile JSON
document is
deleted

/services/api/LRS/agents/
profile

GET
multiple agent JSON

object The Agent
associated with
this profile

[since] Timestamp
(Optional)
Only ids of profiles
stored since
the specified
timestamp
(exclusive) are
returned

None 200 OK
Returns array of
Agent Profile Ids

36

12.2 Statement Example
{
 “version”:”1.0.0”,
 “id”:”ab123cd4-e56f-g7h8-i90j-l234m5n67m8m”, “actor”:{
 “objectType”:”Agent”,
 “name”:”FirstName LastName”,
 “mbox”:”mailto:username@csod.com”
 },
 “verb”:{
 “id”:”http://adlnet.gov/expapi/verbs/completed”,
 “display”:{
 “en-US”:”completed”
 }
 },
 “object”:{
 “objectType”:”Activity”,
 “id”:”http://www.example.com/activities/001”,
 “definition”:{
 “name”:{
 “en-US”:”Example Activity”
 },
 “type”:”http://exampleactivity.com/xapicourse”
 }
 },
 “result”:{
 “completion”:true
 },
 “context”:{
 “instructor”:{
 “objectType”:”Agent”,
 “mbox”:”mailto:username@csod.com”
 },
 “contextActivities”:{
 “parent”:[
 {
 “objectType”:”Activity”,
 “id”:”https://example.com/activity1”,
 “definition”:{
 “name”:{
 “en-US”:”Another Activity”
 }
 }
 }
]
 }
 },
 “timestamp”:”2012-06-01T19:09:13.245Z”,

mailto:username@csod.com
http://adlnet.gov/expapi/verbs/completed
http://www.example.com/activities/001
http://exampleactivity.com/xapicourse
mailto:username@csod.com

37

 “stored”:”2012-06-29T15:41:39.165Z”,
 “authority”: {
 “objectType”: “Group”,
 “member”: [
 {
 “objectType”: “Agent”,
 “account”: {
 “homePage”: “http://portal.csod.com/”,
 “name”: “username_in_csod”
 }
 },
 {
 “objectType”: “Agent”,
 “account”: {
 “homePage”: “http://portal.csod.com/services/api/oauth2/token”,
 “name”: “1bup6dvajnaze”
 }
 }
]
 }
}

http://portal.csod.com/
http://portal.csod.com/services/api/oauth2/token

38

12.3 Creating an xAPI Activity Provider
Note: The information below assumes an understanding of the JavaScript language and the
xAPI specification.

Getting started
There are two open source libraries that can help to create a JavaScript xApi Activity Provider:

1. JSO - OAuth 2.0 Client with JavaScript - Used to create the oauth 2.0 client to authenticate
with the LRS.

2. xAPIWrapper js - A JavaScript wrapper to simplify communication to an LRS. Download
those libraries.

Referencing Libraries
Once you have the libraries locally, add them to your web application:

Obtain OAuth2 Token
After registering your Activity provider in cornerstone, use the clientId to obtain a jso object:

Explanation for the JSO options:
• providerID: OPTIONAL This is just a name tag that is used to prefix data stored in the

browser. It can be anything you’d like :)
• client_id: The client identifier of your client that is trusted by the LRS. This id, you receive

from cornerstone when an activity provider is registered. As JSO uses the implicit grant
flow, there is no need for the client secret.

• redirect_uri: The URI that the user will be redirected back to when completed. This
should be the same URL that this page is presented on. This URI, is the same as the one
registered for this activity provider.

• scopes.request: Control what scopes are requested in the authorization request. The valid
scopes are write/mine and read/mine.

• debug: If debug is set to true, verbose logging will make it easier to debug problems with
JSO.

<script type=”text/javascript” src=”./jso.js”></script>
<script type=”text/javascript” src=”./xapiwrapper.min.js”></script>

var jso = new JSO({
“providerID”: “{{name}}”,
“client_id”: “{{clientId}}”,
“redirect_uri”: “{{redirectUri}}”,
“authorization”: {{portalUrl}} + ‘/services/api/oauth2/authorize’,
“scopes”: { “request”: [“write/mine”, “read/mine”]},
“debug”: true

});

https://github.com/andreassolberg/jso
https://github.com/adlnet/xAPIWrapper

39

Getting the token
To get a token, use the getToken function:

You may also ensure that a token is available early in your application, to force all user
interaction and redirection to happen before your application is fully loaded. To do that make
a call to getToken, and wait for the callback before you continue.

Initialize XAPIWrapper
Create your own configuration object and pass it to the xapiwrapper object

Explanation for the XAPIWrapper configuration options:

endpoint: The location of the LRS services.

auth: Should be set to the bearer Token received in the Jso.GetToken function.

jso.getToken(function(token) { console.
log(“The token is: “, token);
var bearerToken = token.token_type + “ “ + token.access_token.split(“

“).join(“+”); //fix JSO bug that replaces ‘+’ in token with ‘ ‘.
}, opts);

var conf = {
“endpoint” : {{portalUrl}} + “/services/api/LRS/”,
“auth” : bearerToken,

};

ADL.XAPIWrapper.changeConfig(conf);

40

Send a Sample Statement
Create a statement object:

Send the statement to the LRS:

Documentation Links
• JSO library getting started guide.
• xAPIWrapper library documentation.
• xAPIWrapper library example setup.

var stmt =
{

“actor”:{
“mbox”:”mailto:user@example.com”

},
“verb”:{

“id”:”http://adlnet.gov/expapi/verbs/answered”,
“display”:{

“en-US”:”answered”
}

},
“object”:{ “id”:”http://adlnet.gov/expapi/activities/

question”
}

}

ADL.XAPIWrapper.sendStatement(stmt, function(resp, obj){
ADL.XAPIWrapper.log(“[“ + obj.id + “]: “ + resp.status + “ - “ + resp.statusText);

});

https://github.com/andreassolberg/jso/blob/master/README-getting-started.md
http://adlnet.github.io/xAPIWrapper/
https://github.com/adlnet/xAPIWrapper
mailto:user@example.com
http://adlnet.gov/expapi/verbs/answered
http://adlnet.gov/expapi/activities/question
http://adlnet.gov/expapi/activities/question

41

12.4 Error Codes
• ActivityNotFound = “Activity with activityId:’{0}’ Not Found”;

• ActivityProfileNotFound = “Activity Profile with activityId:’{0}’ and profileId:’{1}’ Not Found”;

• AgentProfileNotFound = “Agent Profile with Agent:’{0}’ and profileId:’{1}’ Not Found”;

• ConcurrencyConflict = “Check the current state of the resource and set the ‘If-Match’
header with the following ETag to resolve the conflict: ‘{0}’”;

• DeleteMultipleStatesFailed = “Unable to delete all State documents with Agent:’{0}’,
Activity:’{1}’, registration:’{2}’ and since:’{3}’ parameters”;

• DocumentJsonParseError = “Document cannot be parsed as a JSON Object”;

• DuplicateStatementErrorMessage = “The following statement already exists: {0}”;

• InvalidAgentJsonObject = “Invalid agent Json object:{0}”;

• InvalidIRI = “’{0}’ must be a valid Internationalized Resource Identifier (IRI). Current
value:{1}”;

• InvalidNonEmptyString = “’{0}’ must be a non empty string”;

• InvalidStatementJsonAdditionalProperties = “The property ‘{0}’ at ‘{1}’ is invalid”;

• InvalidStatementJsonGenericErrorWithPath = “An invalid snytax occurred at ‘{0}’”;

• InvalidStatementJsonGenericError = “The json is invalid.”;

• InvalidStatementJsonPattern = “’{0}’ must be a valid {1}. Current value:{2}”;

• InvalidStatementJsonRequiredProperty = “The required property ‘{0}’, is missing from
‘{1}’”;

• InvalidTimestampValue = “’{0}’ timestamp parameter must be formatted according to ISO
8601. Current value:{1}”;

• JsonContentType = “application/json; charset=utf-8”;

• LoggedInAgentNotInStatement = “The current user does not have permission to send a
statement concerning other users.”;

• StatementJsonParseError = “Invalid JSON. {0}”;

• StatementNotAllowedToBeVoided = “You are not authorized to void the following
statement: {0}”;

• StateNotFound = “State with Agent:’{0}’, Activity:’{1}’ and stateId:’{2}’ Not Found”;

• StatementNotFoundErrorMessage = “The requested statement was not found: {0}”;

• UnknownAgentInStatement = “The following user is unknown: {0}”;

• UserCannotAccessResource = “The current user has {0} permission and does not have
access to this specific resource”;

• UserNotInRole = “The current user does not have the following permission: {0}”;

• XApiIntegrationDisabled = “Access Denied. xApi is not enabled”;

• XExperienceAPIVersionErrorMessage = “An X-Experience-API-Version header with a value
between 1.0.0 and 1.1.0 is missing from the request”;

	_Hlk110418627
	_MON_1721029926
	_GoBack
	_MON_1721030622
	_bookmark32
	1. CSOD xAPI (Tin Can) Support
	1.1 Introduction
	1.2 How does it work?
	1.3 What is a Statement?

	2. Implementation
	2.1 Feature Enablement
	2.2 Access Key for an Activity Provider

	3. xAPI Integration
	4. Authentication Requirements
	Workflow Description
	4.1 Application Registration
	4.2 Required registration information

	5. oAuth 2.0 Requests
	5.1 For Authorization Grant Flow:
	URL
	Response
	Obtain Access Token
	Request
	Response
	Using the Access Token

	5.2 For Implicit Grant Flow:
	URL
	Response
	Using the Access Token

	5.3 For Clients Credentials Grant Flow:
	Request
	Request
	Response

	6. User Authorization – Consent Screen
	6.1 Consent Screen Functionality
	6.2 Authentication Possibilities
	SSO Authentication
	No SSO Authentication

	7. xAPI Statements
	7.1 Code Example
	7.2 Actor Variables
	7.3 Supported Verbs
	7.4 Object, Results, and Context Properties
	7.5 xAPI course transcript updates via xAPI statement

	8. Export xAPI statements via API
	8.1 Export xAPI statements call structure:
	Response

	8.2 Performing a system-wide statement export:

	9. Document API
	9.1 State API
	9.2 The Activity Profile API
	9.3 The Agent Profile API
	9.4 Voided Statements

	10. Considerations
	11. Transcript Integration
	11.1 Transcript View

	12. Appendix
	12.1 TinCan Restful API
	12.2 Statement Example
	12.3 Creating an xAPI Activity Provider
	Getting started
	Referencing Libraries
	Obtain OAuth2 Token
	Getting the token
	Initialize XAPIWrapper
	Send a Sample Statement
	Send the statement to the LRS:
	Documentation Links

	12.4 Error Codes

